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Dynamics of single-molecule force-ramp experiments: The role of fluctuations
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In the force-ramp mode of the atomic force microscope, the force with which a macromolecule is stretched
is increased linearly in time by properly controlling the motion of the cantilever through a feedback loop.
Using a master equation approach for the coupled cantilever-macromolecule system, we mimic such a feed-
back loop, to study nonequilibrium effects in the measurements of force-extension curves and fluctuations. In
particular, it is shown that the fluctuations are the same for force-ramp experiments and for the more commonly
used constant velocity experiments. Thus the exact same statistics suffice for the explanation of either experi-

ment. Specific results are presented for the stretching of Dextran.
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I. INTRODUCTION

The atomic force microscope (AFM) is an ideal tool in
polymer science to study the thermodynamics and kinetics of
single polymer molecules [1-5]. Quantities of interest and
accessible by AFM are the force-extension curve, fluctua-
tions, relaxation times, and nonequilibrium dynamics. Al-
though simple in concept, AFM experiments must be de-
signed judiciously to extract the maximum amount of
information from macromolecules. Time scales, length
scales, and force regimes are the elements that need careful
consideration. This becomes obvious from the fact that the
molecule is intricately coupled to the AFM cantilever, and
that from the deflection of the latter one extracts both the
length of the polymer and the applied force. Whereas the
cantilever has a fixed force constant or stiffness (within its
harmonic regime), the equivalent segment elasticity K
=N(df/ L) of a macromolecule varies continuously from
(almost) zero under zero force to infinity at maximum exten-
sion or bond rupture; here N is the number of monomers, f is
the applied force, and L is the end-to-end length. Thus, any
analysis of data and any theory concerned with such experi-
ments must treat the latter as a coupled molecule-cantilever
system [6].

In the simplest operational mode of an AFM, one controls
the position of the cantilever relative to the substrate to
which the molecule is attached, and increases it, for instance,
with a constant velocity, D=vt. In this situation both the
length of the molecule and the force on it are measured, and
both fluctuate. On the other hand, in the force-ramp mode
one uses a feedback loop to ensure that the applied force
increases, for instance, linearly with time, f=af. To obtain
such a linearly increasing force, one must control the motion
of the cantilever appropriately, i.e., nonlinearly in time. It
must be realized that such a feedback system only controls
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the average force. This can be seen from a comparison of the
time scales involved; the macroscopic cantilever position can
be mechanically updated on the millisecond time scale,
whereas fluctuations in the cantilever deflection occur faster,
typically on the microsecond time scale [4,7].

These fluctuations have first been measured for fixed
forces by Kawakami er al. [8], who calculated the effective
spring constant and damping parameter of the polymer-
cantilever system in solution under different conditions.
Walther er al. [4] recently measured the force-extension
curve and fluctuations of Dextran stretching, comparing con-
stant velocity and force-ramp modes of their AFM. How well
this measurement can be performed in a force-ramp setup
depends critically on the cantilever stiffness, the bandwidth
of the feedback loop, and the desired rate of force increase
[4].

As long as the internal relaxation time of the molecule is
shorter than the experimental time scale, the molecule-
cantilever system remains in thermal equilibrium. In such
cases statistical mechanics can be employed in the Helm-
holtz ensemble for the coupled system with D the control
variable. The main insights from such an analysis are as
follows [6]:

(i) For a sufficiently long molecule (with more than 100
monomers typically) any AFM measurement (in equilibrium)
will yield the mechanical equation of state of thermodynam-
ics, i.e., the force-extension curve.

(ii) Fluctuations are always given (in the harmonic regime
of the cantilever with force constant k,) by

(8L)* =kgT/[k.+ (3f10L)7),  (8f)*=k:(SL)>. (1)

This point is especially important when it comes to compar-
ing force-ramp AFM experiments with those of the constant
velocity variety. It will be shown here by various means that
the thermal fluctuations are quantitatively the same in both
experiments.

(iii) For infinitely soft or stiff cantilevers, with k,— 0 or
», the Helmholtz ensemble for the coupled cantilever-
molecule system simplifies to the Gibbs or Helmholtz en-
semble, respectively, for the isolated molecule.

Infinitely soft or stiff means that the cantilever force con-
stant must be much smaller or much larger than the stiffness
of the molecule in the relevant force regime. For the Dextran
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molecules used in Ref. [4] we have in the force range
50 pN<f<1600 pN a molecule stiffness 10 pN/nm
<(df/JL);<1000 pN/nm. Thus for the cantilevers with k,
~50 pN/nm neither limit is reached, and the formulas of
Eq. (1) for the coupled system must be used in an analysis of
fluctuations.

The usual approach to interpret single-molecule experi-
ments is to use fitting formulas gleaned from very simple
analytic models such as the wormlike chain model, the freely
jointed chain (FJC) model or ad hoc two-state FIC models
[5.9]. Such models are usually not thermodynamically con-
sistent, and cannot account for the proper temperature depen-
dence of the system being analyzed [10].

Here we present a complete analysis of the problem, start-
ing from the nonequilibrium statistical mechanics of the
coupled molecule-cantilever system [ 11], employing the con-
tinuous two-state model for conformational transitions in
Dextran [10]. Specific attention will be given to the question
of optimizing the experiment with regard to cantilever stiff-
ness and motion. We will see that, for commonly used can-
tilevers with stiffness in the range of 100 pN/nm, and force-
loading rates of less than 100 nN/s, the molecule is
maintained in equilibrium by fast internal relaxation pro-
cesses. Nonequilibrium effects are predicted for stiff cantile-
vers and higher pulling speeds.

II. THEORY OF THE COUPLED CANTILEVER-
MOLECULE SYSTEM

A. Equilibrium

The statistical mechanics for the coupled cantilever-
molecule system has previously been solved for systems
with internal relaxation processes which are sufficiently fast
to maintain equilibrium throughout the experiment [6]. In
this case the distance D of the cantilever from the substrate
where one end of the macromolecule is attached is the me-
chanically controlled variable, and the statistical mechanics
of the coupled cantilever-macromolecule system can be
treated in the Helmholtz ensemble with the partition function

o

Z.(T,D) =X, f dLz,(T,L)Z(T,D-L). (2)
0

Here the subscripts m and ¢ refer to the molecule and the
cantilever, respectively, N\, =h/\2mukgT is the thermal
wavelength, w is the mass of a single monomer, and L is the
z component of the molecular end-to-end vector, with the z
direction perpendicular to the substrate surface.

From Eq. (2) we obtain the Helmholtz free energy of the
total system

F(T,D)=-kgTn Z.,(T,D), (3)
which yields the average force on the system

IF(T,D)

f(T’D):_ D T'

(4)

As the coupled cantilever-macromolecule system is in inter-
nal equilibrium, this is also the force with which the cantile-
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ver acts on the macromolecule and vice versa. We obtain for
the average length of the macromolecule

oo

dLLZ,(T,L)Z(T,D - L)

L(T.D) =— , (5)
f dLZ,(T,L)Z(T,D - L)
0
and for the deflection of the cantilever
L.=D-L. (6)

The force-extension curve of the macromolecule, i.e.,
L(T.f), is obtained by solving Egs. (4) and (5) simulta-
neously for a given temperature and varying the cantilever
position D.

To make closer contact with the AFM experiment, we
specify the cantilever to be well approximated by a harmonic
spring with spring constant k.. Its canonical partition func-
tion 1s

Zc(TaLc) = CXp(— %ﬁkcLz> . (7)

Using the partition function (2) and the length (5), we obtain
the average force

s kT 1 [7 9Bk )
AT,D)= N Z JO dLZm(T,L)aDexp< 5 (D-1L)
—ﬁide(D L)Z,(T,L)Z(T,D - L)
_)\ch—m 0 - " T
=k (D-L). (8)

Thus the average force is determined by measuring the av-

erage deflection L, of the cantilever as required by (8). Note,
in particular, that (5) demonstrates that both the length of the
macromolecule and the force needed to maintain this length
are fluctuating quantities. For these we have generally

[

f dL(L*-L*Z,(T,L)Z(T,D - L)
0

(SL?*=1>-1*=

f dLZ,(T,L)Z(T,D - L)
0

)
and for the harmonic cantilever
(8f)* = k2(3L), (10)
so that
¥ 2t (1)
f D/IL-1

It has also been shown [6] that the partition function of a stiff
cantilever approaches a ¢ function, and the system partition
function goes over into that of an isolated molecule (decou-
pled from the cantilever) in the Helmholtz ensemble, i.e.,
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with fixed length L=D and vanishing length fluctuations. On
the other hand, for a very soft cantilever we have D> L; the
force fluctuations become arbitrarily small, so that the sys-
tem partition function goes over into that of the Gibbs en-
semble for an isolated molecule.

B. Kinetics

The standard approach to polymer dynamics in solvent is
the Zimm model [12,13], which treats the polymer itself as a
set of coupled harmonic oscillators subject to viscous effects
due to the solvent, and uses a Langevin equation. The latter
is an approximate treatment obtained from a master equation
for a Markov process. As we have recently formulated the
more general approach via a master equation, which also
includes the coupling to the cantilever, we employ this
method here as well [11]. This will allow us to account for
the conformational transition of Dextran more fully, via the
continuous two-state model [10], rather than as a chain of
coupled harmonic oscillators. In particular, the effects of ac-
tivation barriers to conformational transitions are explicitly
accounted for.

To study kinetic effects when stretching a macromolecule
with an AFM, we use a master equation approach, treating
the end-to-end length of the molecule as the stochastic vari-
able [11]. We introduce the probability distribution
P(T,L,D;t) that at time ¢ the molecule is stretched to a
length L, given that the cantilever is a distance D from the
substrate. Its equilibrium value is given by

ke
2

Peq(T,L,D)=LZm(T,L)eXp<— (D—L)2>. (12)

c-m

Treating stretching as a Markov process, the probability sat-
isfies a master equation,

PTLD =3 WL D)PL, D31
L/
- W(L',L;D)P(L,D;t)], (13)

where the transition rates to go from L— L' are chosen to be
symmetric,

’ A(L — "2 K
W(L,,L;D)z %WO exp(_’[g;'—l‘)_i_%
0,short
><[(D—L)Z—(D—L')Z]), (14)

and satisfy detailed balance, hence the appearance of the
equilibrium partition functions; here w, is the attempt fre-
quency, A is the attempt width, and b g. is the equilibrium
length of an individual monomer.

In order to obtain a numerical imitation of a cantilever
feedback loop, such as is used in a force-ramp AFM, one
now must proceed as follows:

(i) At a position D of the cantilever (initially D=0) we
calculate the partition function Z., for the coupled
molecule-cantilever system from (2) and obtain the molecu-
lar end-to-end-length, its probability distribution (18), and
the average force.
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(ii) Using the molecular partition function we calculate
the transition rates (14) in the master equation for the up-
dated cantilever position D+AD, where AD is the distance
that the cantilever must move in a time interval Af, to main-
tain the constant force-loading rate a.

(iii) The master equation is solved for a time interval At
starting with initial conditions P(7T,L,D;t) to obtain
P(T,L,D+AD;t+Ar).

(iv) With the latter we calculate the average length and the
average force according to Egs. (5) and (8).

(v) If the force lies above (below) f=a(r+Atr) we reduce
(increase) D until the prescribed force ramp is achieved. This
is our feedback loop.

The result is the following: (a) a linear force ramp f=at
and the time dependence of the cantilever position D(7) re-
quired to achieve it; (b) the force-extension curve, fluctua-
tions, etc.

For a wideband feedback loop we must replace step (iv)
by the following:

(iv') From the distribution P(T,L,D+AD;t+At), ran-
domly select a large number of lengths, calculate the associ-
ated force, and average both with this distribution. Then pro-
ceed to (v).

A sophisticated experimental feedback loop, as recently
implemented with integrating amplifiers [4] will average the
input data, as suggested by step (iv) for the cantilever update.
This leaves the thermal motion of the cantilever undisturbed
by the force-feedback system, and only the average motion
of the molecule and cantilever are tracked; this is therefore
not a realization of a Gibbs ensemble (constant force) for an
isolated molecule. Two different conditions which would in
fact give rise to the above ensemble (vanishing force fluc-
tuations) are the limit of a soft cantilever (with respect to the
molecule being stretched), and the limit of high bandwidth in
the force-feedback system. The first situation has been inves-
tigated previously, and is obtainable for some experimental
systems [6]. The latter condition, which requires the limit of
high feedback bandwidth, implies that the force-feedback
loop in such a system could mechanically track and eliminate
the fluctuations of a stiff cantilever; this is a daunting chal-
lenge considering the mass difference, and is unlikely for
cantilevers of experimentally attainable stiffness, considering
also the time scales of the optics, electronics, and mechanical
linkages involved [4,7].

C. Continuous two-state model for Dextran

Simple models do not account for detailed structure in
individual monomer units, and hence cannot predict the con-
formational transition in Dextran. The Dextran molecule is
therefore described with a continuous two-state model [10],
where freely jointed monomers are given a length-dependent
monomer potential V(b) to account for short (chair) and long
(boat) monomers. It has been shown [10] that this approach
gives an excellent account of the properties of Dextran. To
get the partition function of the molecule in the Helmholtz
ensemble (at fixed end-to-end length) we employ the transfer
matrix method using the Green function formalism, with the
length L as the independent variable. The Green function
satisfies the Chapman-Kolmogoroff equation
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gn(L70):de“z—(L’L,)gn—l(L,’O)’ (15)

where the transfer operator 7 specifies the possible lengths or
position of a monomer 7, given the state of monomer n—1.
In this particular case, 7 is obtained from

Ne o r1 50
TL,L) = E d cos QJ :ax dbS(L—-L' — b cos 6)
i=1 J -1 by
xexp[- BV (D)]; (16)

for details see Ref. [10]. Notice that the transfer operator (16)
is written for general monomer potentials. It is reduced to the
continuous two-state model by choosing N-=2 with para-
bolic V. Equations (15) and (16) are then integrated nu-
merically. A molecule consisting of N monomers is described
by a Green function Gy(L,0), which specifies the probability
of finding the end of the molecule at a distance L above the
substrate.

For the evaluation of observable properties, such as length
and force fluctuations, one still must couple the polymer de-
scription in the form of Gy to one of the AFM cantilevers,
which in itself is a small statistical system. The conjugated
Green function G*(L.,L) for a cantilever with deflection L,
and spring constant k, is given by

Bk,
2

G(L.L)= eXP(— (L.- L)2> , (17)

from which we can calculate the probability of finding the
end of the polymer at some length L as

P(L) = G'(L,L)GN(L,0) . (18)

f dL'G (Lo, L' )Gy(L',0)

Any quantity observable with the AFM can be calculated
from the moments of the probability density (L")
=[dLL"P(L). In particular, the average molecular length (L)
is the first moment of Eq. (18), which yields the force-
extension curve in the Helmholtz ensemble as (f)((L))
=k.(D—-{L)), for each value of the cantilever deflection L..

III. RESULTS

In a previous paper [10], equilibrium results for Dextran,
such as the force-extension curve, length fluctuations, and
expansion coefficients have already been given, and were
shown to agree very well with experimental results. These
equilibrium results were obtained from constant velocity ex-
periments performed at such low pulling rates that internal
equilibrium was maintained by intramolecular relaxation
processes. In this paper, we concentrate on force-ramp ex-
periments on Dextran in and out of equilibrium.

To describe force-ramp experiments with the master equa-
tion (13), we must specify the attempt frequency w, and the
width A in the transition rates (14). They could be obtained
by fitting relaxation times, which to our knowledge have not
been measured for Dextran. They could also be estimated
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FIG. 1. (Color online) Force-extension curves for Dextran (pa-
rameters of the continuous two-state model: N=175, bgghor
=0.442%0.12 nm,  bjne=0.570 nm  [14],  V{10ne= Vo short
=543+54 meV, kgo=13170.22X10* pN/nm, and Kiong
=8.29+0.04 X 10* pN/nm [10]). The color scheme and the line
types are the same for all figures, namely, black, blue, green, and
red lines for cantilever stiffnesses k.=1, 10, 100, 1000 pN/nm,
and solid, dashed, dotted lines for force ramps a=1, 10,
100 nN/s. Of the 12 combinations of a and k. plotted here, only
four distinguishable curves are visible. The top curve is k.
=1000 pN/nm with =100 nN/s; four curves coincide second
from the top, namely, =10 nN/s, k.=1000, and the remaining
three curves with =100 nN/s. The bottom (solid and dashed)
curves represent the seven remaining combinations of « and k., and
do not vary by more than 10 pN for a given extension. Inset: seg-
ment elasticity of Dextran.

from activation barriers between the boat and chair configu-
rations. For lack of each we simply take values obtained for
DNA relaxation [11], namely, wy=5X%10* s~! and BA=r,
but we hasten to add that all of our conclusions about non-
equilibrium effects for fast force ramps depend on these val-
ues; we return to this point in the conclusions.

We begin the discussion of examples with soft cantilevers,
k.<100 pN/nm. For force rates a=1, 10, 100 nN/s we
“measure” the equilibrium force-extension curve, solid line
in Fig. 1. To achieve these force ramps, the cantilever must
be moved according to the steepest curves in Fig. 2 (for 1
pN/nm and 10 pN/nm, respectively), which are identical for
force rates <100 nN/s. Recall that the cantilever position
is the sum of the molecule extension and the cantilever de-
flection

| ~1

L+

D(t)=L+L, , (19)

k

c

so that the speed with which it must be moved to get a force
ramp with constant slope, f=at, is given by

o JL
v=—+a—, (20)
k. df

in terms of the inverse of the molecule stiffness df/ JL; the
latter is shown in the inset of Fig. 1 as the segment elasticity
Nf/dL of a system in equilibrium. Note that force and time
are equivalent in all figures via f=at; hence to compare the
position of the cantilever as a function of time for two dif-
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FIG. 2. (Color online) Cantilever motion: Force (or time, via f
=at) dependence of cantilever position needed to achieve constant
force ramps with various cantilevers, with symbols as in Fig. 1. As
in Fig. 1, only five curves differ from the equilibrium results: These
are (from right to left) =100 nN/s, k,=1000 pN/nm (dotted red
curve), =10 nN/s, k,=1000 pN/nm (dashed red curve), and «
=100 nN/s, k.=100, 10,and 1 pN/nm (dotted green, blue, and
black curves, respectively).

ferent loading rates we must rescale the axes in Fig. 1 for the
two different curves via t=f/ a.

In Fig. 3 we plot dL/df=v/a—1/k. as a measure of the
velocity (20). As long as the system is maintained in equi-
librium, this quantity, plotted as the solid line (black) in Fig.
3, is independent of spring constant k. and force-loading rate
a. At zero force the molecule stiffness is less than these soft
cantilevers, but rises quickly, and thus its inverse no longer
contributes to the speed for forces larger than about 100 pN,
resulting in a perfect force ramp with a constant pulling rate
of the cantilever, a=k.v.

Picking a cantilever with a stiffness k.<<100 pN/nm, the
force-extension curves for force rates <100 nN/s are still
indistinguishable from the equilibrium curve. For higher

10 T T T
1
z
S ;
E I
S 0.1
S
[
)
0.01
1 1 1
0.00 10 400 800 1200 1600
Force [pN]

FIG. 3. (Color online) dL/df, obtained by differentiating the
curves in Fig. 1. The cantilever speed v needed to produce a con-
stant force ramp f=at is directly related to this quantity by Eq. (20).
The color and symbol coding is the same as in Figs. 1 and 2; the
five curves which are distinguishable from the equilibrium (solid
curve) result are again (from right to left) a=100 nN/s, k.,
=1000 pN/nm (dotted red curve), a=100 nN/s, with k,
=100, 10, and 1 pN/nm (dotted green, blue, and black curves,
respectively) and «=10 nN/s, k.=1000 pN/nm (dashed red
curve).
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FIG. 4. (Color online) Length fluctuations as a function of ex-
tension for various force ramps and cantilever stiffnesses. Because
the fluctuations of the softest cantilever (k.=1 pN/nm) are those of
equilibrium for all three force rates, we plot in three panels the
fluctuations for only the three stiffest cantilevers, k.
=10, 100, 1000 pN/nm for panels (a), (b), and (c), respectively.
The symbols and colors used are the same as those used in Figs.
1-3, hence the dotted curves represent a loading rate «
=100 nN/s, the dashed curve represents a=10 nN/s, and the solid
curves represent a loading rate =1 nN/s.

spring constants, k,=100 pN/nm and k.=1000 pN/nm, the
force-extension curve and cantilever motion still only depart
from the equilibrium curve for the highest force rates, «
=100 nN/s, and =10 nN/s, respectively. Hence, for can-
tilever spring constants and force-loading rates in the range
of the present experiment [4], there is no difference in the
force-extension relation and corresponding cantilever motion
(20) from their equilibrium curves. However, for higher
spring constants and force-loading rates, the motion of the
cantilever is quite different over the first 100 pN, indicating
the presence of nonequilibrium effects (Figs. 2 and 3). The
reason why the force-extension curve is not much different is
due to the fact that up to 100 pN we are still in the entropic
regime, so that small discrepancies can be swamped. The
nonequilibrium effects alluded to are most obvious in the
cantilever velocity, which no longer starts at a maximum as
for the softer cantilever, but takes a finite time to get going.

One of our motivations to look in detail at the dynamics
of the force-ramp experiment was the question of how fluc-
tuations in the coupled cantilever-molecule system were af-
fected; these are shown in Fig. 4. First note that the length
fluctuations for the slow pulling rates (solid lines) all show a
pronounced plateau, which can be attributed to the cantilever
limiting the system at small forces, despite the force-loading
conditions. This situation changes only at large forces, when
the polymer itself becomes sufficiently stiff to limit the sys-
tem beyond the cantilever’s effects, in accordance with Eq.
(1). This result is in agreement with the measurements of
Walther ef al. on Dextran [4] and also has been measured by
Kawakami et al. [8]. The latter work contains data on the
overall effective spring constant, which also matches the cal-
culations presented here, as well as Eq. (1).

If nonequilibrium effects are encountered, as they are for
stiffer cantilevers and higher force rates, they should show
up clearly in the fluctuations, as we have shown previously
for isolated molecules [11]. Indeed, only for the softest can-
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tilever (k.=1 pN/nm) are the fluctuations those of equilib-
rium for all three force rates. Already for k.=10 pN/nm we
see a (minimal) enhancement in the fluctuations for low
forces (in the entropic regime) but only at the highest force
rate [panel (a) in Fig. 4]. This enhancement becomes dra-
matic for stiffer cantilevers, panels (b) and (c) in Fig. 4. Note
that the major nonequilibrium effect on the fluctuations oc-
curs well below the transition region for Dextran.

IV. DISCUSSION

A master equation approach to the stretching dynamics of
a polymer molecule in an AFM allows a detailed analysis
and assessment of the various modes of measurement,
namely, constant velocity and constant force ramp. In par-
ticular, it produces the velocity profile needed for the motion
of the cantilever to achieve a constant force ramp. It turns out
that for presently used cantilevers, with stiffnesses between
10 and 100 pN/nm, and for force ramps of less than 100
nlN/s, internal relaxation processes ensure that the molecule
is in internal equilibrium throughout the experiment. Non-
equilibrium effects show up for very stiff cantilevers, in the
range of 1000 pN/nm, and for high force-loading rates.
These effects can be seen in the force-extension curves at
low forces (in the entropic regime) as discussed in an earlier
paper [11], and also through a considerable increase in the
fluctuations, as seen in Fig. 4. However, we conclude that
such effects cannot be seen in current experiments.

All of the conclusions reached in this paper regarding the
observation of nonequilibrium effects in AFM experiments
on macromolecules, and Dextran in particular, are predicated
on the choice of the attempt frequency w,, which we took
from a fit to DNA relaxation times. Because Dextran is much
stiffer than DNA (the force needed to induce a conforma-
tional transition is higher by an order of magnitude) its at-
tempt frequency should be higher. If that is the case, then
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nonequilibrium effects should only be observable at yet
faster force ramps.

To move into the direction of nonequilibrium experiments
it would be highly desirable to measure the molecular relax-
ation times. This could be done by very fast pulling and then
following the relaxation of the molecule as a function of
time. A fit with the present theory to the relaxation curve
would provide a value for the attempt frequency w, [15].

In a recent paper by Walther et al., results for the stretch-
ing of Dextran under constant velocity and force-ramp con-
ditions are presented, including fluctuations. We have shown
here that their observations can be fully explained if the fluc-
tuations of the cantilever are included. In general, thermal
length and force fluctuations of the AFM cantilever are
present in both constant velocity, as well as constant average
force-loading rate experiments implemented using force-
feedback loops. Hence, if the molecule-cantilever system is
maintained in equilibrium throughout both experiments, then
one should expect the same results—provided of course that
the conditions in the two experiments are otherwise identical.
We realize that separately performing these experiments un-
der precisely the same conditions is not possible, but would
hope that, by changing only the controlling electronics, con-
stant velocity and constant force-loading rate experiments
could be performed successively on a single-molecule-
cantilever system, with the expectation of perfect agreement
in all experimentally observable quantities.
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